Math 261

Spring 2023
Lecture 48

Feb 19-8:47 AM

Evaluate

$$
\begin{aligned}
& \int_{1}^{18} \sqrt{\frac{3}{x}} d x=\int_{1}^{18} \frac{\sqrt{3}}{\sqrt{x}} d x=\int_{1}^{8} \sqrt{3} \cdot x^{-1 / 2} d x \\
& \left.=\sqrt{3} \cdot \frac{x^{-1 / 2+1}}{-1 / 2+1}\right]_{1}^{18} \\
& \left.\left.=\sqrt{3} \cdot \frac{x^{1 / 2}}{1 / 2}\right]_{1}^{18}=2 \sqrt{3} \cdot \sqrt{x}\right]_{1}^{18} \\
& =2 \sqrt{3}[\sqrt{18}-\sqrt{1}]=2 \sqrt{3}[\sqrt{9} \sqrt{2}-1] \\
&
\end{aligned}
$$

May 11-8:51 AM

$$
\begin{aligned}
& \begin{array}{l}
\int_{1}^{\text {Evaluate }} \frac{1+\sqrt[3]{x}}{\sqrt{x}} d x=\int_{1}^{64}\left(\frac{1}{\sqrt{x}}+\frac{\sqrt[3]{x}}{\sqrt{x}}\right) d x \\
=\int_{1}^{64}\left(x^{-1 / 2}+x^{\frac{1}{3}-\frac{1}{2}}\right) d x=\int_{1}^{64}\left(x^{-1 / 2}+x^{-1 / 6}\right) d x \\
\left.\left.=\left(\frac{x^{-1 / 2+1}}{-1 / 2+1}+\frac{x^{1 / 6+1}}{-1 / 6+1}\right)\right]_{-1}^{64}=\left(\frac{x^{1 / 2}}{1 / 2}+\frac{x^{5 / 6}}{5 / 6}\right)\right]_{1}^{64} \\
\left.=\left[2 \sqrt{x}+\frac{6}{5} \sqrt[6]{x^{5}}\right]\right]_{1}^{64} \\
=\left(2 \sqrt{64}+\frac{6}{5} \sqrt[6]{64^{5}}\right)-\left(2 \sqrt{1}+\frac{6}{5} \sqrt[6]{1^{5}}\right) \\
=2.8+\left[\frac{6}{5} \cdot 32\right]-2-\frac{6}{5} \\
=14+\frac{6}{5}(32-1)=14+\frac{6.31}{5}=\frac{256}{5}
\end{array}
\end{aligned}
$$

find $\int \frac{1+\sqrt[3]{x}}{\sqrt{x}} d x$
Let $\begin{aligned} x & =u^{6} \rightarrow u=\sqrt[6]{x} \\ d x & =6 u^{5} d u\end{aligned}$

$$
\begin{aligned}
& \int \frac{1+\sqrt[3]{x}}{\sqrt{x}} d x=\int \frac{1+\sqrt[3]{u^{6}}}{\sqrt{u^{6}}} \cdot 6 u^{5} d u \\
& =\int \frac{1+u^{2}}{x^{3}} \cdot 6 u^{5} x^{2} d u=6 \int\left(1+u^{2}\right) \cdot u^{2} d u \\
& =6 \int\left(u^{2}+u^{4}\right) d u=6\left(\frac{u^{3}}{3}+\frac{u^{5}}{5}\right)+C \\
& =2 u^{3}+\frac{6}{5} u^{5}+C \\
& =2(\sqrt[6]{x})^{3}+\frac{6}{5}(\sqrt[6]{x})^{5}+C \\
& =2 \sqrt{x}+\frac{6}{5} \sqrt[6]{x^{5}+C}
\end{aligned}
$$

May 11-9:03 AM
find the shaded area below:

$$
\left.\begin{array}{rl}
A=\int_{0}^{2}\left(2 y-y^{2}\right) \cdot d y \\
2 y-y^{2}-0
\end{array}=\left(y^{2}-\frac{y^{3}}{3}\right)\right]_{0}^{2}
$$

May 11-9:15 AM

$$
\begin{align*}
& \text { Evaluate } \int_{0}^{4} \frac{x}{\sqrt{1+2 x}} d x \\
& \int_{1}^{9} \frac{\frac{u-1}{2}}{\sqrt{u}} \cdot \frac{d u}{2} \\
& d u=2 d x \\
& \frac{d u}{2}=d x \\
& x=0 \rightarrow u=1 \\
& =\int_{1}^{9} \frac{\frac{1}{2}(u-1)}{2 \sqrt{u}} d u \\
& x=4 \rightarrow u=9 \\
& =\frac{1}{4} \int_{1}^{9} \frac{u-1}{\sqrt{u}} d u=\ldots . .=
\end{align*}
$$

If $f(x)$ is cont. on $[a, b]$, then average value of $f(x)$ on $[a, b]$ is

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

class QE 13:
Find the average value of $f(x)=\sqrt[3]{x}$ on $[1,8]$. Exact answer required.

$$
\begin{aligned}
f_{\text {ave }} & \left.=\frac{1}{8-1} \int_{1}^{8} \sqrt[3]{x} d x=\frac{1}{7} \int_{1}^{8} x^{1 / 3} d x=\frac{1}{7} \cdot \frac{x^{4 / 3}}{4 / 3}\right]_{1}^{8} \\
& =\frac{3}{28}\left(8^{4 / 3}-1^{4 / 3}\right)=\frac{3}{28}(16-1)=\frac{3}{28} \cdot 15=\frac{45}{28}
\end{aligned}
$$

May 11-9:24 AM

